Thursday, 1 March 2018

Exercise 6.3

Q1. In the given figure, sides QP and RQ of Δ PQR are produced to points S and T respectively. If SPR = 135° and PQT = 110°, find PRQ.
Given: Δ PQR, SPR = 135° and PQT = 110°
To find: PRQ
Solution: PQR + PQT = 180° (Linear pair)
110° + PQR = 180°
⇒ ∠PQR = 180° – 110° = 70°
Now, SPR = PQR + PRQ (Exterior angle theorem)
135° = 70° + PQR
⇒ ∠PQR = 135° – 70° = 65° Ans.


Q2. In the given figure, X = 62°, XYZ = 54°. If YO and ZO are the bisectors of XYZ and XZY respectively of Δ XYZ, find OZY and YOZ.
Given: X = 62° and XYZ = 54°. YO and ZO are the bisectors of XYZ and XZY respectively.
To find: OZY and YOZ
Solution: XYZ = 54° (Given)
∴ ∠OYZ = ½ XYZ = 54°/2 = 27°
in Δ XYZ, X + Y + Z = 180° (Angle sum property of a triangle)
⇒ ∠Z = 180° – (62° + 54°) = 180° – 116° = 64°
∴ ∠OZY = 64°/2 = 32° Ans.
In Δ OYZ, OZY + OYZ + YOZ = 180° (Angle sum property of a triangle)
⇒ ∠YOZ = 180° – (27° + 32°) = 180° – 59° = 121° Ans.