Thursday, 1 March 2018

Exercise 6.3

Q1. In the given figure, sides QP and RQ of Δ PQR are produced to points S and T respectively. If SPR = 135° and PQT = 110°, find PRQ.
Given: Δ PQR, SPR = 135° and PQT = 110°
To find: PRQ
Solution: PQR + PQT = 180° (Linear pair)
110° + PQR = 180°
⇒ ∠PQR = 180° – 110° = 70°
Now, SPR = PQR + PRQ (Exterior angle theorem)
135° = 70° + PQR
⇒ ∠PQR = 135° – 70° = 65° Ans.


Q2. In the given figure, X = 62°, XYZ = 54°. If YO and ZO are the bisectors of XYZ and XZY respectively of Δ XYZ, find OZY and YOZ.
Given: X = 62° and XYZ = 54°. YO and ZO are the bisectors of XYZ and XZY respectively.
To find: OZY and YOZ
Solution: XYZ = 54° (Given)
∴ ∠OYZ = ½ XYZ = 54°/2 = 27°
in Δ XYZ, X + Y + Z = 180° (Angle sum property of a triangle)
⇒ ∠Z = 180° – (62° + 54°) = 180° – 116° = 64°
∴ ∠OZY = 64°/2 = 32° Ans.
In Δ OYZ, OZY + OYZ + YOZ = 180° (Angle sum property of a triangle)
⇒ ∠YOZ = 180° – (27° + 32°) = 180° – 59° = 121° Ans.

Saturday, 24 February 2018

Exercise 6.2

Q1. In the given figure, find the values of x and y and then show that AB ‖ CD.
Given: Figure
To prove: AB ‖ CD
Proof: 50° + x = 180° (Linear pair)
⇒ x = 180° – 50° = 130°
Now, y = 130° (Vertically opposite angles)
∴ x = y = 130°
But they are alternate interior angles
∴ AB ‖ CD


Q2. In the given figure, if AB ‖ CD, CD ‖ EF and y:z = 3:7, find x.
Given: AB ‖ CD, CD ‖ EF and y:z = 3:7
To find: x
Solution: Let y = 3a and z = 7a
AB ‖ CD and CD ‖ EF [Given]
AB EF
x = z = 7a (Alternate interior angles)
Now, x + y = 180° (Co-interior angles)
7a +3a = 180°
10a = 180°
a = 18°
x = z = 7a = 7 x 18° = 126° Ans.


Q3. In the given figure, if AB ‖ CD, EF ⊥ CD and GEF = 126°, find AGE, GEF and FGE.
Given: AB ‖ CD, EF ⊥CD and GEF = 126°
To find: AGE, GEF and FGE
Solution: AB ‖ CD (Given)
∴ ∠AGE = GED = 126° Ans. (Alternate interior angles)
GEF = GED – 90° = 126° – 90° = 36° Ans.
Now, FGE + GED = 180° (Co-interior angles)
∴ ∠FGE = 180° – 126° = 54° Ans.


Q4. In the given figure, If PQ ‖ ST, PQR = 110° and RST = 130°, find QRS.
Given: PQ ‖ ST, PQR = 110° and RST = 130°
To find: QRS
Construction: Draw a line AB ‖ ST through point R
Solution: PQ ‖ ST and AB ‖ ST (Given)
PQ ‖ AB
PQR + QRA = 180° (Co-interior angles)
110° + QRA = 180°
⇒ ∠QRA = 180° – 110°
⇒ ∠QRA = 70°
Now, RST + SRB = 180° (Co-interior angles)
130° + SRB = 180°
⇒ ∠SRB = 180° – 30°
⇒ ∠SRB = 50°
Now, QRA + QRS + SRB = 180° (AB is a straight line)
70° + QRS + 50° = 180°
120° + QRS + 50° = 180°
⇒ ∠QRS = 180° – 120° = 60° Ans.


Q4. In the given figure, if AB ‖ CD, APQ = 50° and PRD = 127°, find x and y.
Given: AB  CD, APQ = 50° and PRD = 127°
To find: x and y
Solution: APQ = PQR (Alternate interior angles)
x = 50° Ans.
Now, PRQ + 127° = 180° (Linear pair)
⇒ ∠PRQ = 180° - 27° = 53°
Now, x + y + PRQ = 180° (Angle sum property of a triangle)
50° + y + 53° = 180°
103° + y = 180°
y = 180° – 103° = 77° Ans.


Q6. In the given figure, PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B, the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD. Prove that AB ‖ CD.

Given: PQ and RS are two mirrors placed parallel to each other
To prove: AB ‖ CD
Construction: Draw BX ⊥ PQ and CY  RS
Proof: ABX = CBX and DCY = BCY [Angle of incidence = Angle of reflection]
But CBX = BCY (1) (Alternate interior angles)
∴ ∠ABX = DCY (2)
Adding (1) and (2), we get
CBX + ABX = BCY + DCY
⇒ ∠ABC = DCB
But they are alternate interior angles

AB ‖ BC


Wednesday, 14 February 2018

Exercise 6.1


Q1. In the given figure, lines AB and CD intersect at O. If AOC + BOE = 70° and BOD = 40°, find BOE and reflex COE.
Given: Lines AB and CD intersect at O.  
To find: BOE and reflex COE
Solution: AOC = BOD = 40° (Vertically opposite angles)
But AOC + BOE = 70° (Given)
 BOE = 70° – 40°
= 30° Ans.
Now, AOC + COE + BOE = 180° (AB is a straight line)
∴ 40° + COE + 30° = 180°
 70° + COE = 180°
⇒ COE = 180° – 70°
⇒ COE = 110°
 Reflex COE = 360° – 110° = 250° Ans.


Q2. In the given figure, lines XY and MN intersect at O. If POY = 90° and a:b = 2:3, find c.

Given: Lines XY and MN intersect at O. POY = 90° and a:b = 2:3.
To find: c
Solution: Let a = 2x and b = 3x
POY = 90° (Given)
 POX = 90° (Linear pair)
 a + b = 90°
 2x + 3x = 90°
 5x = 90°
 x = 18°
 a = 2x = 36° and b = 3x = 54°
Now, b + c = 180° (Linear pair)
 54° + c = 180°
 c = 180° – 54°

 c = 126° Ans.


Q3. In the given figure, if PQR = PRQ, then prove that PQS = PRT.
Given: PQR = PRQ
To prove: PQS = PRT
Proof: PQS + PQR = 180° (1) (Linear pair)
PRT + PRQ = 180° (2) (Linear pair)
From (1) and (2), we get
PQS + PQR = PRT + PRQ
But PQR = PRQ (Given)
PQS = PRT 



Q4. In the given figure, if x + y = w + z, then prove that AOB is a line.
Given: x + y = w + z
To prove: AOB is a line
Proof: x + y + z + w = 360° (Complete angle)
But x + y = w + z (Given)
x + y + x + y = 360°
2x + 2y = 360°
2 (x + y) = 360°
x + y = 180°
AOB is a line


Q5. In the given figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that ROS = ½ (QOS – POS).
Given: POQ is a line. Ray OR line PQ. OS is another ray lying between rays OP and OR.
To prove: ROS = ½ (QOS – POS)
Proof: OR ⊥ PQ (Given)
POR = 90°
POS + ROS = 90° (1)
and POS + QOS = 180° [Linear pair]
⇒ (POS + QOS)/2 = 180°/2
⇒ ½ POS + ½ QOS = 90° (2)
From (1) and (2), we get
POS + ROS = ½ POS + ½ QOS
⇒ ROS = ½ POS + ½ QOS – POS
⇒ ROS = ½ QOS – ½ POS
⇒ ROS = ½ (QOS – POS)


Q6. It is given that XYZ = 64° and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects ZYP, find XYQ and reflex QYP.
Given: XYZ = 64° and XY is produced to point P. Ray YQ bisects ZYP.
To find: XYQ and reflex QYP
Solution: XYZ + ZYP = 180° (Linear pair)
∴ ∠ZYP = 180° – XYZ = 180° – 64° = 116°
ZYQ = ½ ZYP = ½ (116°) = 58°
XYQ = XYZ + ZYQ = 64° + 58° = 122° Ans.
QYP = ZYQ = 58°
Reflex QYP = 360° – 58° = 302° Ans.