Wednesday, 14 February 2018

Exercise 6.1


Q1. In the given figure, lines AB and CD intersect at O. If AOC + BOE = 70° and BOD = 40°, find BOE and reflex COE.
Given: Lines AB and CD intersect at O.  
To find: BOE and reflex COE
Solution: AOC = BOD = 40° (Vertically opposite angles)
But AOC + BOE = 70° (Given)
 BOE = 70° – 40°
= 30° Ans.
Now, AOC + COE + BOE = 180° (AB is a straight line)
∴ 40° + COE + 30° = 180°
 70° + COE = 180°
⇒ COE = 180° – 70°
⇒ COE = 110°
 Reflex COE = 360° – 110° = 250° Ans.


Q2. In the given figure, lines XY and MN intersect at O. If POY = 90° and a:b = 2:3, find c.

Given: Lines XY and MN intersect at O. POY = 90° and a:b = 2:3.
To find: c
Solution: Let a = 2x and b = 3x
POY = 90° (Given)
 POX = 90° (Linear pair)
 a + b = 90°
 2x + 3x = 90°
 5x = 90°
 x = 18°
 a = 2x = 36° and b = 3x = 54°
Now, b + c = 180° (Linear pair)
 54° + c = 180°
 c = 180° – 54°

 c = 126° Ans.


Q3. In the given figure, if PQR = PRQ, then prove that PQS = PRT.
Given: PQR = PRQ
To prove: PQS = PRT
Proof: PQS + PQR = 180° (1) (Linear pair)
PRT + PRQ = 180° (2) (Linear pair)
From (1) and (2), we get
PQS + PQR = PRT + PRQ
But PQR = PRQ (Given)
PQS = PRT 



Q4. In the given figure, if x + y = w + z, then prove that AOB is a line.
Given: x + y = w + z
To prove: AOB is a line
Proof: x + y + z + w = 360° (Complete angle)
But x + y = w + z (Given)
x + y + x + y = 360°
2x + 2y = 360°
2 (x + y) = 360°
x + y = 180°
AOB is a line


Q5. In the given figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that ROS = ½ (QOS – POS).
Given: POQ is a line. Ray OR line PQ. OS is another ray lying between rays OP and OR.
To prove: ROS = ½ (QOS – POS)
Proof: OR ⊥ PQ (Given)
POR = 90°
POS + ROS = 90° (1)
and POS + QOS = 180° [Linear pair]
⇒ (POS + QOS)/2 = 180°/2
⇒ ½ POS + ½ QOS = 90° (2)
From (1) and (2), we get
POS + ROS = ½ POS + ½ QOS
⇒ ROS = ½ POS + ½ QOS – POS
⇒ ROS = ½ QOS – ½ POS
⇒ ROS = ½ (QOS – POS)


Q6. It is given that XYZ = 64° and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects ZYP, find XYQ and reflex QYP.
Given: XYZ = 64° and XY is produced to point P. Ray YQ bisects ZYP.
To find: XYQ and reflex QYP
Solution: XYZ + ZYP = 180° (Linear pair)
∴ ∠ZYP = 180° – XYZ = 180° – 64° = 116°
ZYQ = ½ ZYP = ½ (116°) = 58°
XYQ = XYZ + ZYQ = 64° + 58° = 122° Ans.
QYP = ZYQ = 58°
Reflex QYP = 360° – 58° = 302° Ans.






1 comment:

  1. Poker - Bet on the Future with PlayBaccarat!
    PlayBaccarat.com is the 메리트카지노 best online poker site in the world created 카지노 in 1997 to cater to 바카라 사이트 US players.

    ReplyDelete