Q1. In the given figure, lines AB and CD intersect at O. If ∠AOC + ∠BOE = 70° and ∠BOD = 40°, find ∠BOE and reflex ∠COE.
Given: Lines AB and CD intersect at O.
To find: ∠BOE and reflex ∠COE
Solution: ∠AOC = ∠BOD = 40° (Vertically opposite
angles)
But ∠AOC + ∠BOE = 70° (Given)
∴ ∠BOE = 70° – 40°
= 30° Ans.
Now, ∠AOC + ∠COE + ∠BOE = 180° (AB is a straight line)
∴ 40°
+ ∠COE + 30° = 180°
⇒ 70° + ∠COE = 180°
⇒ ∠COE = 180° – 70°
⇒ ∠COE = 110°
∴ Reflex ∠COE
= 360° – 110° = 250° Ans.
Q2.
In the given figure, lines XY and MN intersect at O. If ∠POY
= 90° and a:b = 2:3, find c.
Given:
Lines
XY and MN intersect at O. ∠POY = 90° and a:b
= 2:3.
To
find: c
Solution: Let
a = 2x and b = 3x
∠POY = 90° (Given)
∴ ∠POX = 90° (Linear pair)
⇒ a + b = 90°
⇒ 2x + 3x = 90°
⇒ 5x = 90°
⇒ x = 18°
∴ a =
2x = 36° and b = 3x = 54°
Now, b + c = 180° (Linear pair)
⇒ 54° + c =
180°
⇒ c = 180° –
54°
⇒ c = 126° Ans.
Q3.
In the given figure, if ∠PQR
= ∠PRQ,
then prove that ∠PQS = ∠PRT.
Given: ∠PQR = ∠PRQ
To
prove: ∠PQS
= ∠PRT
Proof: ∠PQS + ∠PQR = 180° (1) (Linear pair)
∠PRT
+ ∠PRQ = 180° (2) (Linear pair)
From (1) and (2), we get
∠PQS
+ ∠PQR = ∠PRT + ∠PRQ
But ∠PQR = ∠PRQ (Given)
∴ ∠PQS
= ∠PRT
Q4.
In the given figure, if x + y = w + z, then prove that AOB is a line.
Given: x +
y = w + z
To
prove: AOB is a line
Proof: x +
y + z + w = 360° (Complete angle)
But x + y = w + z (Given)
∴ x +
y + x + y = 360°
⇒ 2x +
2y = 360°
⇒ 2 (x
+ y) = 360°
⇒ x +
y = 180°
∴ AOB
is a line
Q5.
In the given figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is
another ray lying between rays OP and OR. Prove that ∠ROS
= ½ (∠QOS
– ∠POS).
Given:
POQ is a line. Ray OR line PQ. OS is another ray lying between rays OP and OR.
To
prove: ∠ROS
= ½ (∠QOS – ∠POS)
Proof: OR ⊥ PQ (Given)
∴∠POR
= 90°
∠POS
+ ∠ROS = 90° (1)
and ∠POS
+ ∠QOS = 180° [Linear pair]
⇒ (∠POS
+ ∠QOS)/2 = 180°/2
⇒ ½ ∠POS
+ ½ ∠QOS = 90° (2)
From (1) and (2), we get
∠POS
+ ∠ROS = ½ ∠POS + ½ ∠QOS
⇒ ∠ROS
= ½ ∠POS + ½ ∠QOS – ∠POS
⇒ ∠ROS
= ½ ∠QOS – ½ ∠POS
⇒ ∠ROS
= ½ (∠QOS – ∠POS)
Q6.
It is given that ∠XYZ
= 64° and XY is produced to point P. Draw a figure from the given information.
If ray YQ bisects ∠ZYP,
find ∠XYQ
and reflex ∠QYP.
Given: ∠XYZ = 64° and XY is produced
to point P. Ray YQ bisects ∠ZYP.
To
find: ∠XYQ
and reflex ∠QYP
Solution: ∠XYZ + ∠ZYP = 180° (Linear pair)
∴ ∠ZYP
= 180° – ∠XYZ =
180° – 64° = 116°
∠ZYQ
= ½ ∠ZYP = ½ (116°) = 58°
∠XYQ
= ∠XYZ + ∠ZYQ = 64° + 58° = 122° Ans.
∠QYP
= ∠ZYQ = 58°
∴ Reflex
∠QYP = 360° – 58° = 302° Ans.
Poker - Bet on the Future with PlayBaccarat!
ReplyDeletePlayBaccarat.com is the 메리트카지노 best online poker site in the world created 카지노 in 1997 to cater to 바카라 사이트 US players.